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Some examples of outliers
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Outliers and robust statistics, example 1

What is an outlier, how do you model them and how do you avoid them?

An outlier in regression
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Figure: A regression y; = Bx; +¢;, ¢; i.i.d. (0, (72). Is the outlier just an
influential observation?
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Outliers and robust statistics, example 2

Li.d. observations with a step at t = 10

Figure: A step dummy at t = 10. The variance 0'% = 0.01 is estimated by
6% = 16.37. Some t—ratios are t = (X(1) — X)/& = —1.97 and
t = (X(50) — X) /¢ = 0.49.
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Outliers and robust statistics, example 3

AR(1) with outlier, rho=0.9

Innovation outlier
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Figure: An innovative (added to the equation) and an additive (added to the
process) outlier in the model y; = By;j_1 +¢; i.i.d. (0,0?)
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Modelling of outliers and some robust statistics
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Modelling of outliers

One can model them as either innovative or additive outliers and interpret
them as either influential or completely wrong observations.
One can model them deterministically or randomly:

fle) = (1—a)fy(e) +afi(e)

Two well known robust estimators are (Huber, 1964)

Huber-skip : mﬂanmm{ B'x;)?, %}
i=1

and the Least Trimmed Squares (Rousseeuw, 1984, Visek 2006)

h

o I N2

LTS : mﬁm Z;(y — B X))
1=

Such robust estimators are analysed for

1. Asymptotic distribution when there are no outliers to evaluate the loss

of efficiency

2. Influence function and breakdown point when there are outliers
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The model and the problem

The multiple regression model:
Vi :ﬁ/X,'—i—S,' :;4+(x’z,-+s,-, i=1,...,n

where ¢; is an "innovation" independent of (xi,..., X, €1,...,€&_1) with
finite variance, distribution function F, density f, and derivative f

E(e;) need not be zero

The regressors: deterministic, or stochastic; stationary or random walk
M-estimators: The objective function

n
Ra(B) =n""}_p(yi — B'xi).
i=1
where p(u) > 0 is continuous, increasing for u > 0 and decreasing for

u < 0 with right and left derivatives. The minimizer is an M—estimator.
Leading case is Huber-skip
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The model and the problem

The problem: To find conditions for the M-estimator to exist, be
consistent and have a first order asymptotic expansion, which allows us to
find asymptotic distributions

The technique: We apply martingale techniques to study weighted and
marked empirical processes, containing estimation uncertainty
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The Huber-skip estimator

The Huber-skip Huber (1964) is a robust M-estimator, (Jure¢kovd, Sen,
and Picek, 2012 for the location model)

n
1
Objective function : n~! Z > min{(y; — B'x;)%, ¢}
i=1

n
Score function : n~* Y (i — /3/Xi)xl'/1(|y,-—ﬁ’x,-|§c)
i=1

(a) c=14 (b) c=0.7

50 100150200
|
28.15(8.1628.180

2 ® @ o o e o5

Why Huber-skip ?
1. Difficult to compute 2. Requires known scale 3. More robust estimators
exist 4. The mathematics too difficult
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A few definitions

Ri(B) = W‘épm—ﬁ%%

n
2, = N Y_ xix{N and (£, 5.1 = 0p(1)
i=1

h(w) = E(p(e—p)) = h(p,)
' = 0
huy) = = [plu—p,)F(w)ds >0,

By = (4. 2p)" and Bo = (1o +P‘p""6)/
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Least squares: p(u) = u?

Quantile regression: p(u) = —(1 — p)ul(,<o) + pul(,>0)
Maximum likelihood: p(u) = — log f(u)

Huber-skip: p(u) = % min(u?, c?)

Some literature:

@ Huber, P.J. (1964) Robust estimation of a location parameter. Annals
of Mathematical Statistics 35, 73-101.

e Maronna, R.A., Martin, D.R., and Yohai, V.J. (2006) Robust
Statistics: Theory and Methods. New York: Wiley.

@ Huber, P.J. and Ronchetti, E.M. (2009) Robust Statistics. New York:
Wiley.

@ Juretkova, J., Sen, P.K. and Picek, J. (2012) Methodological Tools in

Robust and Nonparametric Statistics. London: Chapman &
Hall/CRC Press.
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Results
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Main results

Theorem 1 Under Assumptions, a minimizer B of R,(pB) exists with large
probability and N™*(B — B,) = Op(n'/?>77) for 0 <y < 1/4

Theorem 2 Under more Assumptions, N~ (B — ﬁp) = Op(1) and has a
first order expansion

N

N (B~ B,) = i) VY (e — ) +on (1)

i=1
h(w) = Elole—p)), ‘<up> — E(plei — 1,)) = 0,
h(p,) = /p(u — ) f(u)du >0, B, = (4o + p,, a5)’
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The main results for the Huber-skip

For the Huber-skip for symmetric density
h(0) = F(c) — F(—c) — 2cf(c)

n
N~ By — By) = h(0) "IN in€i1(|8i|§6) +op(1)
i-1
Stationary regressors: N = n~1/2

.. <

03By = Bo) 2> () N (0. [ P (u)duz )

—C
Random walk regressors: N = n~!

[nu]

_ D _ D
n Y2 X0 = Wa(u), n71/? Y eil(jgj<e) — WE(u)

1
0

i=1
(B~ ) 2 hO) ([ W) [ (o)
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Calculation of the Huber-skip by iteration
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A 1-step estimator

The score equation is difficult to solve numerically:

n

2 (i = Boxi)xiL (1 —pxg|<c) = O

i=1

A 1-step estimator: Take some initial estimator B and regress on
: : !
observations with |y; — B x;| < ¢:

0 = Z(YI—5/X’)X;1(\y;—5'x;\§c)
B-p) = (N'Zx,xl Hrol<c N)TIN'Y gl
i|<c) = (lyi—B'xi|<c)

A "Taylor's" expansion in terms of the estimation error N=1(B — B) gives

1 2cf(c) 1m0 o
F(C)—F(—C)N (ﬁ ,B)+ P(l)

n
2N Y X1,
Flo—Fog o N Lseilielze *
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Iteration of the 1-step estimator

For the (k + 1)st step we find

(k+1

NTETT -p) = Wﬁf’\" L xieil (g <o

(C)N_I(B(k) —B) +op(1)

Iterating to oo when 2¢f(c)/(F(c) — F(—c)) < 1 gives the expansion of
Huber-skip

- 1 g —1 / . Lo,
Flo)— F(—) —acf(e) " " ;X'S'l(ls;\§c)+0P(1)

Sgren Johansen (Economics) Huber-skip estimator November 10-11 2015 19 /29



Condition for fixed point

1.0
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A condition for the central part of the distribution to be
non-trivial, and a fixed point in the iterated 1-step
estimator

2cf(c)

F(c) — F(—c) —2cf(c) >0 or FO—F(=o) <
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A condition on small regressors and the proof of
tightness
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The condition for few small regressors

For & a vector of unit length, |5| = 1, we define

For small a this gives the fraction of regressors with small projecting on §.
If x; are linearly dependent, F,(a) = 1. Thus F,(a) measures linear
dependence.

An assumption for existence and consistency of the M—estimator is
Assumption For some 0 < ¢ <1

lim  P(Fy(a)>1-¢)=0
oy gy P (Fal2) ¢)
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Examples of the condition for small regressors

L If x;i = 1(;>[nz,]) then the frequency of zero values is n™*[n&], &5 < 1

71,, _71n o CO 0§3<1
! glwx,wga) = §1<|x,»ga> =[Gl H{ 1 1<a

2. x; = (1,in 1) then F,(a) < 8a — 0, for (a,n) — (0, )
3. x; = (1,i7!) then F,(a) — 1, for (a,n) — (0, 0)

Theorem F,(a) 2.0, for (a,n) — (0,00) in case

4. If x; is a stationary AR(k), with density of &'x;|xi, ..., x;_1 uniformly
bounded (an example is Gaussian errors)

5. If x;n71/2 is a random walk with density of &'x;/(né'®4)1/? uniformly
bounded (an example is Gaussian errors)
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Theorem 1 Under Assumptions (x; stationary), a minimizer B of R,(B)
exists with large probability and p — B, = Op(1)
"Proof" A lower bound for R,(B) is, using p = B, + A6, A =|p—p,|

nt Zp , here p(u) = %min(uQ, c?)

& = Ho = A0'X)L(je | <) L 1575 |)

v
S
L
'M
=

1 B 1
= *CZ” lee\<A (16'x;|>a) § 2{1_1\8\>A (|5'Xf\Sa)}

> %8{1 — P(lex| > A) — Fa(a)} for A > (c+ A+ [p,])/a
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The asymptotic theory using martingales

Sgren Johansen (Economics) Huber-skip estimator November 10-11 2015 26 / 29



The asymptotic theory for non-smooth objective function

Theorem 2 Under more Assumptions (x; stationary), B has a first order
expansion

N - By) = hlry) SN Y xiples — gy + op(1)

i=1

Proof:
L. Note that nR,(B) = X1, p(yi — B'x;)x! is not smooth
2. Define the martingale

My (B) = Y _{o(vi — B'xi) — pyi — Bpxi) }xi — h{(B = B,) xi + p,}xi
i=1
3. Note that Y7, A{(B — B,)'xi + p,}x] is smooth
4. Prove that for 0 < < 1/4, SUP|g—p,|<Bn~" n~Y2|M(B)| = op(1).
5. Thus replace the score nR,(B) — nR,,(ﬁp) by

7:1 h{(ﬁ - pr)IXf + .up}Xi/
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The asymptotic theory for non-smooth objective function

We found nR,(B) — an(,Bp) ~ Y h{(B— pr)/Xi + .”p}xil
6. Replace B by B:

Yo pei —p)xXIN =~ Y h{(B—B,)xi +u, XN
i=1 i=1
~ h(0)(B—B,)N N Y xixN
i=1

Conclude

NB-B,) = ,3(10)<N' Y xxIN) IV Y xipes — p,)xt+ op (1),
i=1 i=1
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We have defined M-estimators and in particular the Huber-skip
n
mﬁin Y min{(yi — B'x;)% ¢}
i=1

suggested some 50 years ago.

Using recent martingale results and a "new" definition of scarcity of small
regressors, we have proved tightness, consistency, and found an asymptotic
expansion from which we can find asymptotic distributions depending on
regressors.

The results hold for a wide class of regressors including some deterministic
regressors, stationary regressors, and random walk regressors.

The assumptions for the M-estimators include conditions for the objective
function p, the density f, and the regressors.

Johansen, S. and B. Nielsen (2013). Asymptotic theory of M-estimators
for multiple regression in time series. In progress.
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